Synchronous Oceanic and Atmospheric Data Acquisition: field test release and validation of atmospheric, oceanographic, and deep-sea probes in the Azores Islands

Author(s): Tiago Matos¹, Marcos Martins², Alexandra Moutinho³, Carlos Henriques³, Dario Silva³, Jose Pacheco⁴, Sergio Oliveira⁴, Carlos Faria¹, Joao Rocha¹, Luis Goncalves¹, Fatima Viveiros⁴, Paulo Fialho⁴, Diamantino Henriques⁵, Rui Neto³

¹CMEMS – Universidade do Minho; ²INESC TEC; ³IDMEC – Universidade de Lisboa; ⁴IVAR – Universidade dos Açores; ⁵Instituto Português do Mar e da Atmosfera

Limerick, June 2023

Synchronous Oceanic and Atmospheric Data Acquisition

Atmospheric probe

HAB launch

- Atmospheric sensors testing
- Real-time communications

Oceanographic probe

- Oceanographic monitoring
- Data acquisition and sensors testing
- > Watertight capabilities

- Materials and sensors suited for high pressures
- > Drifter mode
- Satellite communications

Atmospheric probe

WiMo PicoAPRS-Lite APRS Transceiver Module

- > Temperature sensor
- Pressure sensor
- APRS long-range communications
- GPS tracking

Super-capacitor and solar panel to supply the system

Probe built in polyuremethane material

- Diameter: 200mm
- > Weight: 1,8kg

Oceanographic probe

Customized data-logger based on stm32L496ZG processor

- real time clock to keep date and time
- data stored on a microSD card

Sensors

- > turbidity
- Iuminosity
- water temperature
- hydrostatic pressure (depth)

LiPo battery and power manager module

Watertight capsule

Battery plug

Turbidity sensor

RTC battery

microSD socket

Luminosity and MS5837-30A sensors

Deep-sea probe

Sensors

- Pressure/depth (0 400 bar)
- Water temperature
- Iuminosity

GPS module

RockBlock 9603 IRIDIUM Satellite communications

Underwater connector (plug the power and program the firmware)

Probe built in polyurethane and borosilicate glass microspheres (<10µm diameter) in a proportion of 3:1

- > Weight: 1,6kg
- 27% positive buoyancy

Luminosity and temperature sensors

Ballast holder

Solar pannel

connector

Synchronous Oceanic and Atmospheric Data Acquisition

Preliminary tests in a semi-controlled environment

- Test of the APRS communications (atmospheric probe)
- Validation of the oceanographic probe
- Dive simulation of the deep-sea probe

Preliminary tests in a semi-controlled environment

Atmospheric probe

- Short-range communication tests on the ground
- KENWOOD TH-D74 used as APRS receiver

Preliminary tests in a semi-controlled environment

Oceanographic probe

Preliminary tests in a semi-controlled environment

Preliminary tests in a semi-controlled environment

- 5/20 IRIDIUM packages transmitted with the probe on the water
- 16/20 IRIDIUM packages transmitted with the probe outside the water

Test and validation in São Miguel, Azores

- Launch of the atmospheric probe by HAB
- Coastal monitoring with the oceanographic probe
- Release of the deep-sea probe in the Atlantic

Test and validation in São Miguel, Azores

Atmospheric probe

Test and validation in São Miguel, Azores

Atmospheric probe

- Mobile station (KENWOOD TH-D74)
 - Lost communications with the HAB at 10km horizontal distance
 - Change to an international frequency (?)
- Fixed ground station (FM VHF/UHF and APRS transceiver with LoRa Gateway)
 - No communications
 - Noise and interference from other amateur radio signals

Test and validation in São Miguel, Azores Oceanographic probe

Test and validation in São Miguel, Azores

Synchronous Oceanic and Atmospheric Data Acquisition

Test and validation in São Miguel, Azores

- probe stuck under the surface (e.g., fishing nets or flora)
- malfunction of the ballast
- materials did not resist to high pressures
- change in the buoyancy level or position of the probe due to high pressure
- water infiltrated into the electronics
- malfunction of the software or electronics
- problems with the satellite communications

Conclusion and future work

Atmospheric probe

- Use an APRS fixed frequency
- Validate new atmospheric sensors

Oceanographic probe

- Validate new sensors
- > New monitoring experiments

- Test new materials resistant to high pressures
- Increase buoyancy
- Iridium antenna outside the probe

Synchronous Oceanic and Atmospheric Data Acquisition

https://sonda.uac.pt/en/

Tiago Matos, CMEMs – University of Minho, Portugal matos.tiagoandre@gmail.com

